{{ phone }} {{ location }}

Emergo by UL logo



User research leads to a richer understanding of the factors controlling the quality of user interactions with your product. Insights regarding user needs and preferences can be translated into user interface requirements, which can be reflected in user-centered design solutions. We perform research using a variety of methods, including:

Observations establish user needs for your medical device or IVD

Direct observation is the key to understanding user needs and preferences for a new device or product. During observations, we usually record verbal comments and the time spent on various tasks, as well as document points of friction between people and equipment. For example, we might observe how anesthesiologists interact with their workstations and note that the clinician needs a larger work surface on which to prepare injections and complete paperwork.

Our team of more than 50 researchers and designers works from mutliple research labs across the globe. We conduct research at our labs in Concord, Tokyo, Utrecht, and Chicago or at your facility as the project requires.

Interviews generate comprehensive user feedback

Our research team uses a range of interview methods to gather different kinds of user feedback, including:

  • Diary studies: Ethnographic methods such as diary studies allow us to collect qualitative data about user behaviors and product usage over time.
  • Contextual inquiry: We conduct interviews with people while they perform tasks to place their feedback in context. For instance, we might ask physicians about using an electronic prescription pad while they write prescriptions.
  • One-on-one: Individual interviews in person and over the phone enable a “deep dive” into individual needs and preferences. Such interviews (also called contextual inquiries) can be conducted with people at work.
  • Group: Group discussions are a valuable complement to observations and individual interviews. We conduct group interviews (also called focus groups) to collect many opinions quickly and reach group consensus on specific issues.

Interview results complement the data gathered through observations and benchmark tests.

Benchmark tests are the starting point for further usability testing

We learn a lot about user needs and preferences by conducting usability tests of existing devices. Sometimes, we test an existing product as a precursor to designing its replacement. Other times, we test the performance of competitors' products to establish benchmarks that, in turn, form a basis for user interface requirements and usability goals.

usability testing

Medical device usability research reduces regulatory and patient risk

Our team conducts a large amount of user research focused on medical technology that serves life-critical purposes. Such research can help drive critical design decisions that could be pivotal in terms of obtaining regulatory approval and achieving commercial success. Our team of researchers can help you determine the best research methods for your device and can perform that research at your facility or in one of our labs. We have experience with a range of product types, including novel and high-risk medical devices, consumer products, household appliances, and more.

Questions? Request more information from our specialists


User research leads to a richer understanding of the factors controlling the quality of user interactions with your product.

Learn More >>

Our human factors “toolkit” contains many types of analyses that focus on mental and physical interactions with products.

Learn More >>

Our medical device UI design approach leverages user research to achieve functional and aesthetic goals.

Learn More >>

Summative usability testing, formative usability testing, expert critiques, heuristic analyses, cognitive walkthroughs, and more.

Learn More >>

We want to make the world safer and better through HFE research, training, consulting, and program development.

Learn More >>

Michael Wiklund

General Manager, HFR&D
Allison Strochlic

Allison Strochlic

Research Director

Merrick Kossack

Research Director

Mary Burton

User Experience Director

Richard Featherstone

Research Director
Mark Tavano

Mark Tavano

Director, Sales - HFR&D

Coming soon: Designing for Safe Use (CRC Press, late 2018)

by Kimmy Ansems, Cory Costantino, Alix Dorfman, Brenda Van Geel, Jonathan Kendler, Rachel Aronchick, Valerie Ng, Ruben Post, Jon Tilliss, and Michael Wiklund

We – this book’s authors/designers – are members of the Human Factors Research and Design (HFR&D) at EMERGO by UL. In this book, we have consolidated the lessons we have learned about designing for safe use, that is, designing products that shield people from harm to the extent possible.

We settled on a target of 100 principles on how to make products safer. The principles pertain to hardware, software, document, and document design. Yes, settling on an even one hundred principles was a bit arbitrary and cliché. The myriad ways to design for safe use do not stop sharply at one hundred. But, we think we covered many of the key ones.

We elected to use the term “product” broadly to cover things one might consider to be systems, machines, equipment, instruments, tools, applications, manuals, and instructions. These are all things that need to be designed properly to eliminate or reduce the chance of harm due to normal use and foreseeable misuse.

Most of the design principles could be addressed in an expanded form; even an entire book of its own. We choose brevity for the sake of communicating core concepts with some fun facts to spice things up.

As you read the book, be mindful that the science and art of making things safe is ever changing and that some of the content we present is sure to age. So, complement our guidance with insights you may gain from other sources, ranging from books to technical articles to standards and more.

Usability Testing of Medical Devices - Second Edition

by Michael Wiklund, Jonathan Kendler, and Allison Strochlic

Usability Testing of Medical Devices covers the nitty-gritty of usability test planning, conducting, and results reporting. The book also discusses the government regulations and industry standards that motivate many medical device manufacturers to conduct usability tests.

Since publication of the first edition, the FDA and other regulatory groups have modified their regulations and expectations regarding how medical device manufacturers should approach usability testing. Reflecting these changes, this Second Edition provides updated guidance to readers with an interest or direct role in conducting a usability test of a medical device or system. Key updates involve the 2011 FDA guidance on human factors engineering, requirements set forth by the third edition of IEC 60601 and closely related IEC 62366-1:2015, linking usability test tasks to risk analysis results, and analyzing root causes of use errors that occur during usability tests.

Written by seasoned human factors specialists, Usability Testing of Medical Devices, Second Edition is an informative, practical, and up-to-date handbook for conducting usability tests of medical devices. The book helps ensure a smooth and painless development process―and thus, safe and effective medical devices. Buy the book.

Writing Human Factors Plans and Reports for Medical Technology Development

By Michael Wiklund, Laura Birmingham, and Stephanie Larsen

This book provides the foundation for developing specific human factors engineering (HFE) work products that are needed to meet the FDA's human factors engineering (HFE) guidance. The authors have created a fictitious company and product to generate concrete examples of the plans and reports developed during various stages of HFE. The book includes an HFE project plan, a formative usability test plan and report, a summative (i.e., validation) usability test plan and report, and an HFE report. These work products and additional content outline the activities necessary to develop safe and effective medical devices, making this book an ideal resource for anyone interested in the medical technology field. Buy the book.

Medical Device Use Error Root Cause Analysis
by Michael Wiklund, Andrea Dwyer, and Erin Davis

This book offers practical guidance on how to methodically discover and explain the root cause of a use error―a mistake―that occurs when someone uses a medical device. Covering medical devices used in the home and those used in clinical environments, the book presents informative case studies about the use errors (mistakes) that people make when using a medical device, the potential consequences, and design-based preventions.

Using clear illustrations and simple narrative explanations, the text:

  • Covers the fundamentals and language of root cause analysis and regulators’ expectations regarding the thorough analysis of use errors
  • Describes how to identify use errors, interview users about use errors, and fix user interface design flaws that could induce use errors
  • Reinforces the application of best practices in human factors engineering, including conducting both formative and summative usability tests 

Buy the book

Handbook of Human Factors in Medical Device Design

Edited by Matthew Weinger, Michael Wiklund, and Daryle Gardner-Bonneau

Developed to promote the design of safe, effective, and usable medical devices, Handbook of Human Factors in Medical Device Design provides a single convenient source of authoritative information to support evidence-based design and evaluation of medical device user interfaces using rigorous human factors engineering principles. It offers guidance on user-centric design supported by discussions of design issues, case studies, and examples. The book sets the foundation with coverage of fundamental topics such as aligning the interactive nature of medical devices to the expected use environments ranging from hospitals and ambulances to patients’ homes, drawing on anthropometric and biomechanical data to ensure that designs match the intended users’ bodies and physical abilities, and conducting usability tests and other evaluations to ensure that devices perform as intended. It then focuses on applied design issues, offering guidance on the design of specific types of devices and designing devices for particular use environments. Adapted in part from established design standards and conventions, the design guidance presented in this work distills professional judgment extracted from the contributing authors’ years of experience in applied analysis and design. Written in true handbook style, each chapter stands alone and includes tables, illustrations, and cross references, allowing you to quickly find the exact information you need. Most chapters begin with a general introduction to the selected topic, followed by the presentation of general and special design considerations and then specific, numbered design guidelines. The book also presents a listing of resources, literature, and website references. It not only focuses on the human factors issues that arise when developing medical devices, it supplies the necessary guidance to resolve them. Buy the book.

Designing Usability into Medical Products
by Michael Wiklund and Stephen Wilcox

Advocating a user-centered approach to medical technology design, Designing Usability into Medical Products covers the essential processes and specific techniques necessary to produce safe, effective, usable, and appealing medical systems and products. Written by experts on user-centered research, design, and evaluation, the book provides a range of alternative approaches to the subject. Wiklund and Wilcox explore how to make medical devices safe and effective by involving users in the design process. They discuss specific design and evaluation methods and tools, present case studies of user-friendly medical technologies and corporate human factors programs, and supply related resources for medical design professionals.

The book conveys an in-depth understanding of the user-centered design process, covers design methods for FDA compliance, and offers guidance on performing a variety of hands-on user research, user interface design, and user interface evaluation. The authors make a compelling case for treating the user's needs and preferences as a top design priority, rather than an afterthought. They demonstrate that high-quality customer interactions with systems and products leads to effective medical diagnosis and treatment, increases the physical and mental well being of patients and caregivers, and leads to commercial success in a crowded marketplace. Buy the book.

Usability in Practice

Editor: Michael Wiklund

This volume investigates how major corporations, such as Microsoft, Borland, Apple, Eastman Kodak, and Silicon Graphics, address usability issues. It presents case studies of each organization, outlining their program structures, program goals, and team members' responsibilities and resources. The book also addresses how usability is marketed inside the organization and to customers, as well as the lessons learned during the course of product development efforts. Each illustrated study includes advice that should help readers establish and manage their own program.

Out of print. Used copies might be available.

The Beauty of Unity-in-Variety

by Ruben Post

Products have the capacity to evoke a sense of beauty or appreciation in us. Whether marveling over a new car, admiring the interface of our next generation smartphone, or wielding a perfectly balanced kitchen knife, we can appreciate perceiving their design. The features of an artifact, arranged and produced from following a plan. However, most of us are rarely aware of what exactly makes a certain product aesthetically appealing – or that aesthetically pleasing products are generally considered more usable as well. This thesis studies how our aesthetic appreciation of products is formed in the visual and tactile sensory domain. It identifies how unity (the degree to which a design comes across as ordered, coherent, and structured as one whole) and variety (the degree of differences, diversity, and number of elements in a design) can together explain our aesthetic appreciation for products. Furthermore, it identifies ways to influence unity and variety to create the most aesthetically pleasing designs.

Available at Institutional Repository, Delft University in Delft, The Netherlands. Contact Ruben Post at ruben.post@ul.com.