{{ phone }} {{ location }}

Emergo by UL logo



Device companies must link HFE activities to their risk management efforts to ensure conformance with stringent regulatory expectations and standards.

We can help you by providing HFE training, regulatory guidance, and conducting a gap analysis. We can even help you establish an in-house HFE program if you are ready to take that step.

HFE and usability training workshops and presentations

Our goal is to educate the medical device community about the benefits of human factors engineering to users (i.e., healthcare professionals) and patients. We offer customized, in-person workshops and webinars, as well as share our insights at industry conferences and other educational events.

In-person HFE workshops: We customize workshops to suit our clients' needs. For example, a workshop might be tailored to a customer that produces surgical instruments, diagnostic scanners, or drug delivery devices (i.e., combination products), or one that produces electronic health records. Workshops can introduce technical topics at an introductory or advanced level.

Recent workshop titles include:

Applying human factors engineering to medical technology

Gaining a competitive advantage through human factors

Preventing use error through design

Setting up an in-house human factors program

Conducting effective usability tests

Building user interface prototypes

Writing an effective Human Factors Engineering Report

Root cause analysis of use errors

Residual risk analysis of use errors

Conducting a threshold analysis of a generic combination product

Combining summative usability testing and design validation efforts

Designing effective instructions for use


Contact us to discuss your HFE objectives and we will create a training program for your team.

Medical Device HFE Regulatory Guidance and Gap Analyses

Most regulators are particular about how to document your HFE activities. For example, US FDA and Notified Bodies have somewhat different expectations. Their guidance documents are lengthy and require experience to follow them properly. Moreover, there are undocumented expectations of which to be aware. We can share our lessons learned from many years of practice and innumerable successful submissions that included essential HFE data.

We can help you prepare HFE-related components comprising a complete design history file, such as a Use Specification to satisfy conformance with IEC 62366-1 or an HFE/UE Report for submission to the US FDA. We can also audit your existing HFE activities and documentation for any gaps that might cause regulatory delays.

In-House HFE Program Development for Medical Device Companies

Working with HFE consultants is an effective way to meet usability requirements for medical devices and IVDs. But sometimes it is advantageous to bring your HFE activities in-house. We have experience helping our clients plan and implement properly-scaled, in-house human factors engineering programs that are responsive to medical device regulatory requirements and internal quality goals.

We help by outlining how to transition human factors-related tasks from consultants to in-house specialists with an eye toward cost-effectiveness. As such, we help our clients get the most out of an HFE program to produce superior products. If necessary, we can support in-house HFE teams with services like user interface design, design audits, and usability tests.


Questions? Request more information from our specialists


HFR&D - Usability Engineering of Software as a Medical Device (SaMD), Apr 26, 2019, in , Singapore


User research leads to a richer understanding of the factors controlling the quality of user interactions with your product.

Learn More >>

Our human factors “toolkit” contains many types of analyses that focus on mental and physical interactions with products.

Learn More >>

Our medical device UI design approach leverages user research to achieve functional and aesthetic goals.

Learn More >>

Summative usability testing, formative usability testing, expert critiques, heuristic analyses, cognitive walkthroughs, and more.

Learn More >>

We want to make the world safer and better through HFE research, training, consulting, and program development.

Learn More >>

Michael Wiklund

General Manager, HFR&D
Allison Strochlic

Allison Strochlic

Research Director

Merrick Kossack

Research Director

Mary Burton

User Experience Director

Richard Featherstone

Research Director
Mark Tavano

Mark Tavano

Director, Sales - HFR&D

Coming soon: Designing for Safe Use (CRC Press, late 2018)

by Kimmy Ansems, Cory Costantino, Alix Dorfman, Brenda Van Geel, Jonathan Kendler, Rachel Aronchick, Valerie Ng, Ruben Post, Jon Tilliss, and Michael Wiklund

We – this book’s authors/designers – are members of the Human Factors Research and Design (HFR&D) at EMERGO by UL. In this book, we have consolidated the lessons we have learned about designing for safe use, that is, designing products that shield people from harm to the extent possible.

We settled on a target of 100 principles on how to make products safer. The principles pertain to hardware, software, document, and document design. Yes, settling on an even one hundred principles was a bit arbitrary and cliché. The myriad ways to design for safe use do not stop sharply at one hundred. But, we think we covered many of the key ones.

We elected to use the term “product” broadly to cover things one might consider to be systems, machines, equipment, instruments, tools, applications, manuals, and instructions. These are all things that need to be designed properly to eliminate or reduce the chance of harm due to normal use and foreseeable misuse.

Most of the design principles could be addressed in an expanded form; even an entire book of its own. We choose brevity for the sake of communicating core concepts with some fun facts to spice things up.

As you read the book, be mindful that the science and art of making things safe is ever changing and that some of the content we present is sure to age. So, complement our guidance with insights you may gain from other sources, ranging from books to technical articles to standards and more.

Usability Testing of Medical Devices - Second Edition

by Michael Wiklund, Jonathan Kendler, and Allison Strochlic

Usability Testing of Medical Devices covers the nitty-gritty of usability test planning, conducting, and results reporting. The book also discusses the government regulations and industry standards that motivate many medical device manufacturers to conduct usability tests.

Since publication of the first edition, the FDA and other regulatory groups have modified their regulations and expectations regarding how medical device manufacturers should approach usability testing. Reflecting these changes, this Second Edition provides updated guidance to readers with an interest or direct role in conducting a usability test of a medical device or system. Key updates involve the 2011 FDA guidance on human factors engineering, requirements set forth by the third edition of IEC 60601 and closely related IEC 62366-1:2015, linking usability test tasks to risk analysis results, and analyzing root causes of use errors that occur during usability tests.

Written by seasoned human factors specialists, Usability Testing of Medical Devices, Second Edition is an informative, practical, and up-to-date handbook for conducting usability tests of medical devices. The book helps ensure a smooth and painless development process―and thus, safe and effective medical devices. Buy the book.

Writing Human Factors Plans and Reports for Medical Technology Development

By Michael Wiklund, Laura Birmingham, and Stephanie Larsen

This book provides the foundation for developing specific human factors engineering (HFE) work products that are needed to meet the FDA's human factors engineering (HFE) guidance. The authors have created a fictitious company and product to generate concrete examples of the plans and reports developed during various stages of HFE. The book includes an HFE project plan, a formative usability test plan and report, a summative (i.e., validation) usability test plan and report, and an HFE report. These work products and additional content outline the activities necessary to develop safe and effective medical devices, making this book an ideal resource for anyone interested in the medical technology field. Buy the book.

Medical Device Use Error Root Cause Analysis
by Michael Wiklund, Andrea Dwyer, and Erin Davis

This book offers practical guidance on how to methodically discover and explain the root cause of a use error―a mistake―that occurs when someone uses a medical device. Covering medical devices used in the home and those used in clinical environments, the book presents informative case studies about the use errors (mistakes) that people make when using a medical device, the potential consequences, and design-based preventions.

Using clear illustrations and simple narrative explanations, the text:

  • Covers the fundamentals and language of root cause analysis and regulators’ expectations regarding the thorough analysis of use errors
  • Describes how to identify use errors, interview users about use errors, and fix user interface design flaws that could induce use errors
  • Reinforces the application of best practices in human factors engineering, including conducting both formative and summative usability tests 

Buy the book

Handbook of Human Factors in Medical Device Design

Edited by Matthew Weinger, Michael Wiklund, and Daryle Gardner-Bonneau

Developed to promote the design of safe, effective, and usable medical devices, Handbook of Human Factors in Medical Device Design provides a single convenient source of authoritative information to support evidence-based design and evaluation of medical device user interfaces using rigorous human factors engineering principles. It offers guidance on user-centric design supported by discussions of design issues, case studies, and examples. The book sets the foundation with coverage of fundamental topics such as aligning the interactive nature of medical devices to the expected use environments ranging from hospitals and ambulances to patients’ homes, drawing on anthropometric and biomechanical data to ensure that designs match the intended users’ bodies and physical abilities, and conducting usability tests and other evaluations to ensure that devices perform as intended. It then focuses on applied design issues, offering guidance on the design of specific types of devices and designing devices for particular use environments. Adapted in part from established design standards and conventions, the design guidance presented in this work distills professional judgment extracted from the contributing authors’ years of experience in applied analysis and design. Written in true handbook style, each chapter stands alone and includes tables, illustrations, and cross references, allowing you to quickly find the exact information you need. Most chapters begin with a general introduction to the selected topic, followed by the presentation of general and special design considerations and then specific, numbered design guidelines. The book also presents a listing of resources, literature, and website references. It not only focuses on the human factors issues that arise when developing medical devices, it supplies the necessary guidance to resolve them. Buy the book.

Designing Usability into Medical Products
by Michael Wiklund and Stephen Wilcox

Advocating a user-centered approach to medical technology design, Designing Usability into Medical Products covers the essential processes and specific techniques necessary to produce safe, effective, usable, and appealing medical systems and products. Written by experts on user-centered research, design, and evaluation, the book provides a range of alternative approaches to the subject. Wiklund and Wilcox explore how to make medical devices safe and effective by involving users in the design process. They discuss specific design and evaluation methods and tools, present case studies of user-friendly medical technologies and corporate human factors programs, and supply related resources for medical design professionals.

The book conveys an in-depth understanding of the user-centered design process, covers design methods for FDA compliance, and offers guidance on performing a variety of hands-on user research, user interface design, and user interface evaluation. The authors make a compelling case for treating the user's needs and preferences as a top design priority, rather than an afterthought. They demonstrate that high-quality customer interactions with systems and products leads to effective medical diagnosis and treatment, increases the physical and mental well being of patients and caregivers, and leads to commercial success in a crowded marketplace. Buy the book.

Usability in Practice

Editor: Michael Wiklund

This volume investigates how major corporations, such as Microsoft, Borland, Apple, Eastman Kodak, and Silicon Graphics, address usability issues. It presents case studies of each organization, outlining their program structures, program goals, and team members' responsibilities and resources. The book also addresses how usability is marketed inside the organization and to customers, as well as the lessons learned during the course of product development efforts. Each illustrated study includes advice that should help readers establish and manage their own program.

Out of print. Used copies might be available.

The Beauty of Unity-in-Variety

by Ruben Post

Products have the capacity to evoke a sense of beauty or appreciation in us. Whether marveling over a new car, admiring the interface of our next generation smartphone, or wielding a perfectly balanced kitchen knife, we can appreciate perceiving their design. The features of an artifact, arranged and produced from following a plan. However, most of us are rarely aware of what exactly makes a certain product aesthetically appealing – or that aesthetically pleasing products are generally considered more usable as well. This thesis studies how our aesthetic appreciation of products is formed in the visual and tactile sensory domain. It identifies how unity (the degree to which a design comes across as ordered, coherent, and structured as one whole) and variety (the degree of differences, diversity, and number of elements in a design) can together explain our aesthetic appreciation for products. Furthermore, it identifies ways to influence unity and variety to create the most aesthetically pleasing designs.

Available at Institutional Repository, Delft University in Delft, The Netherlands. Contact Ruben Post at ruben.post@ul.com.